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Truncated Navier—Stokes Equations: Continuous
Transition from a Five-Mode to a Seven-Mode Model

Laura Tedeschini-Lalli!
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A two-parameter family of nonlinear differential equations x = F(x, R, ¢€) is
studied, which allows one to connect continuously, as e varies from zero to one,
the different phenomenologies exhibited by a model of 5-mode truncated
Navier—Stokes equations and by a 7-mode one extending it. A critical value is
found for ¢, at which the most significant phenomena of the 5-mode system
either vanish or go to infinity. New phenomena arise then, leading to the 7-mode
model.

KEY WORDS: Navier-Stokes equations; truncations of the Navier-
Stokes equations; stationary bifurcation; Hopf bifurcation; period-doubling
bifurcation; bifurcation of a periodic orbit into a two-torus; turbulence;
strange attractors.

1. INTRODUCTION

In order to give a mathematical interpretation to the phenomenon of
turbulence in fluids, many numerical investigations were performed on
models of simple nonlinear equations which, although deterministic, dis-
play a chaotic behavior as one or more parameters increase beyond certain
critical values. We refer to Ref. 1 for a wide review of studies in this line,
while Ref. 2 provides the theoretical framework to understand the different
phenomena that occur in such models.

Directly connected with the study of fluid motion are the models
obtained by truncating to a finite number of modes the Fourier series
expansion of the bidimensional Navier—Stokes equations for an incom-
pressible fluid on a torus. In such a way one obtains a one-parameter
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family of ordinary differential equations, where the parameter is propor-
tional to the Reynolds number.®

Recently two interesting models of this kind were carefully studied,
one obtained by a five-mode truncation*> and the other one by a
seven-mode extending it.® The two models exhibit quite different features
concerning the onset of turbulence and the postturbulence behavior. A
natural question arises then, which is relevant about any kind of highly
truncated models of systems actually having infinitely many degrees of
freedom; the question is how truncation affects the phenomenology exhib-
ited by the system. In this work we consider a model which allows one to
connect continuously, by means of a parameter ¢, the two phenomenolo-
gies.

Most of our investigations are numerical, and they were performed on
a CDC 7600. Numerical integration, throughout this paper, means integra-
tion by a Runge-Kutta method of fourth order. We consider periodic
solutions as fixed points of the associated Poincaré map; in this way one
can fit well-known numerical methods for searching fixed points. We used
Newton’s method, because it is not affected by the attracting or repulsive
nature of the orbit. One can thus “follow” periodic orbits continuously as
the parameters change, via an iterative procedure; this is possible because,
as it is reasonable to think, small perturbations of the parameters cause
small perturbations on the coordinates of a fixed point, provided that it still
exists.

A summary of the phenomenologies exhibited by the two models in
question can be found in Section 2, together with some remarks about their
analogies and differences. Section 3 introduces the connecting model, and
the crucial values of ¢, €;, and ¢;. Sections 4, 5, and 6 are devoted to the
detailed study of different phenomena, while Section 7 describes a model of
the same kind exhibiting no chaotic behavior.

2. THE FIVE-MODE AND THE SEVEN-MODE MODELS

Since in this work we study the connections between the two models
studied in Refs. 4-6, it seems useful to report here a concise summary of
the known results about them, referring to these references for details, and
introducing some new notations to better connect the two phenomenolo-
gies. The two pictures in Fig. 1 can help provide better comprehension.

Truncating the Fourier series ex-
pansion on the set Ls = {k; = (1, 1), k,
= (3!0)’1(3 = (2’ - 1)’k4 = (132)5 kS =
(0, 1)} and taking a force acting on the
mode k;, the bidimensional Navier—

Truncating the Fourier series ex-
pansion on the set L;= LsU {kg=
(1,0),k; = (1,2)} and taking a force
acting on the mode k; the bidimen-
sional Navier—Stokes equations be-
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Fig. 1.

Graphical summary (not in scale) of the phenomenologies exhibited by system (2.1)
(Fig. 1A) and system (2.2) (Fig. 1B), as R varies. A sequence of ®®@® indicates for that range of
R a stable fixed point, a sequence of o o o an unstable fixed point; a continuous line —— a
stable periodic orbit, a broken line --- an unstable periodic orbit; a black tube ummmem an
attracting torus T%; a set of « = = turbulent regime. Symmetrical points, orbits, tori undergo-
ing identical behavior due to the symmetries of the systems are identified.
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Stokes equations become
K= —2x; + 45 x5 + 45 x4x5
Xy = —9x, + 3¢5 x,x,
3= —5x3—Ty5x;x, + R 2.1
%g=—5x, =5 xx5

.X.:S = — X5 3\/—5_XIX4

(a) For 0 < R < R, =75 there
is only one stationary solution, P,
which is stable and globally attractive.

{(b) For R; < R < R;=4.8686
there are two other stable attracting
fixed points P,, bifurcated from P, at
R = R, as it has become unstable. (¢
is the sign of the coordinates x;, x,).

(c) For R; < R < Rj=10.2206
there are four more stable attracting
fixed points P, (7 is the sign of coor-
dinate xs); P,, and P,_ bifurcate
from P, at R = R, as P, becomes un-
stable.

(d) At R = Rj four stable sym-
metric periodic orbits HY arise via a
direct Hopf bifurcation from P, each
around one P, now unstable.

oT?

(e) For R3< R < R5=12.821
four identical sequences H/ of peri-
odic orbits take place in connection
with an infinite sequence of bifurca-
tions. At the ith bifurcation, which
occurs at R = p;, each orbit H/"! be-
comes unstable because a real eigen-
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come
Xy = =2x; + 45 x5 + 45 x4%x5
Xy = ~9x, + 3y5 x5

%3= —5x5~ 75 x;%, + 9x,%; + R

X4= —5x5 —5 x5 2.2)
Y5 = — x5 — 3y3 X,x4 + 5%, %6

X6 = —Xg— 5xX5
X7=—5x7—9x,x;3

(a) For 0 < R < R =y1.5 there
is only one stationary solution, P,
which is stable and globally attractive.

(B) For R; < R < Ry =302124
there are two other stable attracting
fixed points, P,, bifurcated from P, at
R = Ry, as it has become unstable. (o
is the sign of the coordinates x,,x,,
Xx7.)

(y) For R > Ry the three fixed
points of (2.2) are all unstable.

(8) At R= Ry two stable sym-
metric periodic orbits ®, arise via a
direct Hopf bifurcation from P,, each
around one P,. The two ©,, which
owing to the symmetries of the model
undergo identical behavior as R in-
creases, become unstable at R = RS
=71.30 because a pair of complex
conjugate eigenvalues of the Liapunov
matrix of their Poincaré map crosses
the unit circle.

(¢) For R{ < R< R{ =172.11
two attracting 2-tori 7(0,), bifurcated
one from each ©,, are present. For
R > R{ they do not attract any more,
and they do not seem to bifurcate into
any other attractor, since every point
randomly chosen in a neighborhood of
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value of its Poincaré map crosses the
unit circle through —1, bifurcating
into the stable periodic orbit H/!,
which has doubled period. The se-
quence {p;} of the bifurcation values,
is found to be compatible with Fei-
genbaum’s conjecture, namely,
lim 2P 5 = 46692

i=»oo Pie1 Py
Thus, a value can be estimated, p.
= 12.821, at which the sequence of
bifurcations accumulates.

(f) At R= R} =12.8185 four
more symmetric orbits arise, which are
stable and attracting, A2 ; they have
spatial structure different from H/ ; in
fact each A2 winds up around two
fixed points, namely, P,, and P__;
the sign 7 indicates that two of them
are contained in the half-space x5 < 0
and the other two in x5>0. As R
decreases to R; a real eigenvalue of
the Liapunov matrix of the Poincaré
map tends to join the unit circle at
+1, and each A2 coalesces with an
unstable orbit A% which is present at
the same time. As R increases, R; can
thus be regarded as a “birth” value of
A9,

(g) For R4 < R < Rg=12.8440 a
second sequence of infinite bifurca-
tions gives rise to four identical se-
quences of periodic orbits {4/} with
the same characteristics of the se-
quences { H. }. Also the sequence { ;)
of the bifurcation points for A4/ is
found to be compatible with Feigen-
baum’s conjecture, and p = 12.8440
is estimated to be the value of R for
which the bifurcations accumulate.

(h) For Rg< R < Rj=13.5012
two symmetric strange attractors are
present, one located in the half-space
x5 < 0, and the other in x5 > 0.
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0, is attracted by other stable periodic
orbits present at the same time.

(¢) For 6330 = R{ < R < R}
= 192.75 two symmetric orbits T, are
present, which are stable and attract-
ing. As R decreases beyond R} a pair
of complex conjugate eigenvalues
crosses the unit circle, so that T, al-
ready exists, unstable, for R < Ry . Its
origin has not been detected. The sign
7 indicates that each T'_ is contained
either in the half-space x5 < 0 or in
x5 > 0.

(m) For R{3 < R < Ry} =227.1
two attracting 2-tori 7(I",) arise, each
from one I',, as I', become unstable at
R = R{; because a pair of complex
conjugate eigenvalues crosses the unit
circle. For R > Ry the tori T(T,) do
not attract any more, and they do not
seem to bifurcate into any other at-
tractor.

(9) For 141.7= R/ < R < R},
= 248.2 two other symmetric periodic
orbits are present, x; and x,, which
are stable and attracting. As R de-
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(i) For R < R < Rg=13.65 a
third sequence of infinite bifurcations
gives rise to four more identical se-
quences of periodic orbits {C/}, with
spatial features and origin similar to
those of {A}}. The sequence {»;} of
the bifurcation points of {C/ } has the
same characteristics as the sequences

{p:} and { p;}.

() For Rg < R < Rg=14.95 the
two symmetric strange attractors that
disappeared at R = R; because of the
birth of stable orbits €2, are again
present.

(k) For R > R4 any trajectory
rapidly becomes periodic, because of
two new stable periodic orbits T, (7
indicates that one of them is contained
in the half-space x5 < 0 and the other
in x5 > 0.)

Tedeschini-Laiii

creases beyond R¢ a pair of complex
conjugate eigenvalues of their Poin-
caré map crosses the unit circle, so
that they already exist, unstable, for
R < R¢, but their origin has not been
detected. As R increases to R{5 a real
eigenvalue tends to join the unit circle
at +1, and each x coalesces with an
unstable orbit x* which is present at
the same time. As R increases, R, can
thus be regarded as a “death” value
for x.

(¢t) For 146.61 = R{ < R < R{
= 166.59 two symmetric orbits are
present, ¢, and i,, which are stable
and attracting. As R decreases beyond
R¢ or increases beyond Rg, a real
eigenvalue of the Poincaré map for ¢
actually crosses the unit circle through
+1. Following ¢ for values of R
< R¢, a “birth” value Rf =142.97
was found at which unstable ¢ arises
with a twice-unstable ¢*; (we will see
in more detail an analogous case in
Section 5). No “death” value for ¢ has
been determined, as R increases.

(k) For R > R{, no simple at-
tractor is present at such large values
of R. Up to the values investigated
(R = 5000), any randomly chosen ini-
tial data yield a completely chaotic
trajectory, sensitively dependent on
initial conditions.

Remarks. Looking at Fig. 1 one can easily check that both system
(2.1) and system (2.2) display cases of hysteresis, i.e., simultaneous occur-
rence of distinct attractors, not justifiable by the symmetries of the systems.

The onset of turbulence is different in the two systems. In fact in
system (2.1) it is connected with infinite sequences of bifurcations of
periodic orbits into periodic orbits. Two strange attractors are present,
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symmetrically placed with respect to the hyperplane x5 = 0. In system (2.2),
instead, turbulence is reached through finite sequences of bifurcations of
attractors into attractors of higher dimension, leading to a unique strange
attractor at high values of R. The finiteness of these sequences is pointed
out in Ref. 6 by affirming that for values of R slightly greater than R/,
R/ respectively, any randomly chosen initial data in a neighborhood of
the unstable 2-tori T(I';), T(®,) is attracted by periodic orbits elsewhere
displaced in the phase space.

No sequence of period-doubling bifurcations seems present in system
2.2).

At high values of R system (2.1) displays periodic behavior (the orbit
), while system (2.2) exhibits chaos at every value of R > R/, investigated.

3. THE CONNECTING MODEL AND STUDY OF STATIONARY
SOLUTIONS

We tried to face the problem of the strong qualitative difference in the
asymptotic behavior of the two models described in Section 2, from a
perturbative point of view. Let us consider the two-parameter family of
ordinary differential equations:

—2x, + 45 x5 + 45 x,x5
—9x, + 3¢5 x,x;

Xy

Xy
X3= —5x3— 7\/§x1x2 + 9ex;x; + R
X4= —5x, =5 x,xs (3.1
%s= —x5— 3V5 x,x, + Sex, x4
Xg= —Xxg— Sex x5
Xy = —5x;— %exx;
For € = 1 the model is the same as (2.2), studied in (6), while for e = 0 the
phase space is the direct sum of two spaces, R’ @ R% on which a solution
x(1) has coordinates x,;(¢#) given by the solution of system (2.1) for i
=1,...,5and x,(t) = x40) - e %, x4(t) = x5(0) - e "
The problem is now to find values of (R, €) critical for the asymptotic

behavior of solutions of this system.
We first observe that system (3.1) is invariant under the symmetries

() (X1, X, X3, Xy, X5, X6, X7)62( X1, Xg, X3, — Xy, — X5, — Xg, X7)
(B) (xl,xz,x3,x4,x5,x6,x7)£ 9(_x1,_-x2,.X3, — Xg5 X5, —-x6,-x7)
(V) (X1, X5, X3, Xy, X5, X, X7)6>(— Xy, — X5, X3, Xy, — X5, X6, — Xq)

which form a group together with the identity transformation.
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System (3.1) has the following stationary properties:

For 0 < R < R, =(7.5)"/? and Ve, the system admits only one station-
ary solution Py, with coordinates x;,=0 for i=1,24,...,7 and X3
= R/5; Py, is stable and, by numerical evidence, globally attractive; at
R = R, a real eigenvalue of the Liapunov matrix at Py crosses the imagi-
nary axis, and two stable stationary solutions arise, P, and P_, bifurcated
from P, with coordinates

x, =16 x,

B 12 1/2
e 05[ 2R — (30) ) }

2(30)'/%(175 + 243¢
x; = (3/10)"/?

X4=X5=x4=0
_ 27€x2
5V5

where 0 = *; P, and P_ are symmetrical and go through identical behav-
ior, so that they will be referred to as P, in the following.
If we consider the Liapunov matrix L (R,¢€) at P,(R,¢), we have that

X =

400 — 1632¢>

M k=R9= 5(30)'/%(3 — 25¢%)

is the condition on (R, €) to have a real eigenvalue of the matrix vanish, and
so (R,(¢),€) is a value critical for P,, possibly a value for a stationary
bifurcation; and

36(175 + 243€%)

@ R RO = R S0 70 — 5

is the condition to have two purely imaginary eigenvalues, so that (R, (€), €}
is a value critical for P, possibly a value for a Hopf bifurcation.

Both R (¢) and R, (€) are increasing functions, with R (0) < R,(0), and
R,(€)—> o0 as ele; =43 /5, while R,(e) is finite for every ¢ €[0,1]. We
determined the value €, = 0.26832 for which R (¢;) = R,(¢,). We have thus
a partition of the interval [0, 1] in three intervals [0, €], (€, €5), and [e;, 1],
characterized by a different behavior of the stationary solutions P, as R
varies:

H 0<e<g
We have R (e) < R, (¢€), so that fixed ¢, the P,’s lose stability at R = R (€)
bifurcating into four stable stationary solutions P, (two from each P,),
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with components

MNP
[a(e)]"?
- [a(e)]"?
Xy = 05\/§R————~b(€)
Xy = 15REQ

where a,7 = + 1 and a(e) = 3-25¢2, and b(e) = 400-1632¢*. We will refer
to these solutions as P, in the following.?

(i) € <e<e
We have R,(e) < R(e) < +o0; fixing ¢, as R increases, the P’s lose
stability at R = R, () generating two symmetric stable periodic orbits ©,
via a direct Hopf bifurcation; as R increases further, the now unstable P,’s
bifurcate into four unstable stationary solutions P__, at R = R (e).

(i) e <e<1
Fixing e, P lose their stability at R = Rj(e) undergoing a Hopf bifurcation.
No more stationary bifurcation takes place.

Studying numerically the behavior of the eigenvalues A;, with J
=1,..., Tfor L (R,¢), we found that what actually happens is that five of
them in any case have a negative real part. The other two, say \; and \;, are
complex conjugate numbers, placed in the left half-plane for small R and
Ve. Fixing € and regarding A, as complex functions of R, we see that
[Tm[A, ,(R)]| is a decreasing function and Re[A, ,(R)] an increasing one, up
to a value of R at which Im(A, ,) vanishes and A; and A, join on the real
axis. From this value on, A ,(R) are real monotone functions, one increas-
ing, the other one decreasing. Such behavior is more understandable by
Fig. 2. All of the bifurcations of P, are due to one or both of A, (R),

2 The condition on (R, ¢€) to have two purely imaginary eigenvalues for the matrix L (R, €)
coincides with the condition for which it has two real eigenvalues symmetric with respect to
zero. This is actually the case in this range of ¢, so that fixing € € [0, ¢;) no Hopf bifurcation
takes place for the P,’s.
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Im Aya® Im PR
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Fig. 2. The behavior of A ,(R, ¢), at fixed ¢, pictured as linear. The brackets on the real axis
indicate that the range {A, ,(R)/R > R,(¢)} is finite, and that for € > €; (Fig. 2D) it does not
contain zero.

crossing the imaginary axis at different points on their way, depending on
the interval in which € is chosen.

At the critical points €, and ¢; the situation is

@iv) e=¢
A;,(R) become real and coincident in zero, for R = R (€) = R,(¢) (Fig. 2B).
We verified numerically that the P,’s undergo a stationary bifurcation also
in this limit case, because they originate the stable P_’s.

V) e=¢
There is no value of R at which P,_(R,€) exist; moreover there is numerical
evidence that the range {A;,(R,e;)/R > R,(e3)} has its lower bound in
zero, in the sense that A,(R)—>0 as R—> oo. For this reason no stationary
bifurcation for P, takes place.

In conclusion, by explicit computation of the matrix L,(R,¢) at the
point P,, we can argue that the whole interesting phenomenology con-
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nected with the four fixed points P,_, studied in Refs. 4 and 5 fore =0, is a
priori possible only for € €[0,¢;), i.e., for values of e for which R (e€) is
finite, and P, (R,e¢) exist. On the other hand, the phenomenology observed
for e = 1 in Ref. 6, with points bifurcating into orbits, with orbits bifurcat-
ing into tori, is a priori possible only for € € (¢, 1], i.e., for values of € for
which P,(R,¢) undergoes a Hopf bifurcation as R increases. For € € (¢, ¢5),
while we have observed numerically a phenomenology of bifurcations of
periodic orbits generated both by P, and by P,, no chaotic behavior has
been observed. We will discuss this intermediate situation in Section 7.

The different bifurcations that take place as R varies, fixing e, are
pictured in Fig. 3.

We studied numerically the stability of the stationary solutions P_,
without computing explicitly the critical values of R for P_.

(i) fixing 0 < € < ¢
P__ arise stable and attractive at R = R (¢) (Fig. 3A). As R increases, they
undergo a direct Hopf bifurcation because a pair of complex conjugate
eigenvalues v, of the Liapunov matrix at P,, L, (R,€) crosses the imagi-
nary axis at R = py(e). The P ’s bifurcate then into four symmetrical
periodic orbits, H?, one around each P, ; the orbits have period TI(H2)
=27 /Im(y, ,), as predicted by the bifurcation theory ”.

(i) fixing ¢ < e < g

. arise unstable at R = R (¢), with a pair of conjugate eigenvalues v, 4 of

the Liapunov matrix L, placed in the right half-plane, and the other five
Y, i=1,2,5,6,7 in the left one. As R increases, the pair y;, crosses the
imaginary axis from right to left at R = R,(¢), while another pair, y,,
crosses the imaginary axis from left to right at R = p,(€). We saw numeri-
cally that R,(€) < pyle) for € € (€, ¢,), and that py(€) < R,(€) for € € (e,,€3),
where €, = 0.31540 is such that R,(e,) = py(e,). We have then a subpartition
of (¢;,€3) in two intervals:

Fixing €, < € < ¢, (Fig. 3B)
P__ arise unstable at R = R (¢€), and become stable at R = R,(¢); the now
stable P_’s lose stability then, at R = py(¢), bifurcating into the stable
periodic orbits H2.

Fixing ¢, < € < ¢ (Fig. 3C)
P__arise unstable at R = R (¢), and then undergo a direct Hopf bifurcation
generating four unstable orbits H2. In this way the P, ’s become “twice”
unstable, i.e., with two pairs of complex conjugate eigenvalues for L in the
right half-plane. As R increases beyond R,(e) and the pair y;, crosses the
imaginary axis from right to left, P_ may undergo another bifurcation, but
we were not able to understand what kind.

Any attempt to look for a stable periodic orbit bifurcated via Hopf at
R = R,(€), as R decreases, for € < ¢,, has been unsuccessful, so that we
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g€(e,,8,) r, rg - P

[0] eefes,i] r ®

Fig. 3. Graphical summary (not in scale) of the bifurcations undergone by 2, and P, as R
varies. A continuous line indicates attractors, a broken line - - - indicates repulsors; the
sign — indicates a stationary bifurcation, and ——C a direct Hopf bifurcation.
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would exclude that this is a direct bifurcation (see Section 7 for the case
€= 0.3).

4. SEQUENCES OF PERIOD-DOUBLING BIFURCATIONS

As mentioned in Section 2, unlike the seven-mode model, in the
five-mode one, i.e., at € = 0, the onset of turbulence is due to the exhaustion
of two infinite sequences of bifurcations, related to two infinite sequences
of periodic orbits, { H'} and {4‘}.

We will call p,(¢) the value of R, fixed ¢, at which the periodic orbit
H'~ ! bifurcates into the periodic orbit H', doubled in period and winding
up twice around H'™'; y,(¢) will denote the value of R, fixed ¢, at which the
orbit 4’7 ! loses stability bifurcating into the periodic orbit 4/, also doubled
in period and winding up twice around A4'~'. Since the sequences {p,(0)}
and {¢(0)} are compatible with Feigenbaum’s conjecture ‘®, in Ref. 5 two
values are estimated, p, and u., at which, respectively, the sequences
{H'} and {4} exhaust themselves.

Still in Ref. 5 a chaotic behavior is observed for poo < R < R}, that is
up to a value of R at which a periodic orbit I" arises, which seems to exist
stable and attractive for any larger value of R. We found that this R range
of turbulence is actually broken by another sequence of period-doubling
bifurcations, giving rise to a sequence of orbits {C’}, which in turn is very
likely to be infinite.?

It is rather puzzling that these phenomena do not appear at all in the
seven-mode model, i.e., at € = 1. The thing can be explained first observing
that all of the critical values p,(e), regarding the sequence {H'}, go to
infinity with efe;. In fact the first orbit of the sequence, H®, arises via a
Hopf bifurcation from the stationary solutions P, which in turn arise at
R,(€), and we saw in Section 3 that R (e)—> + o0 as eTe;. Moreover, looking
at Fig. 4, one can sec that turbulence is actually “swallowed” by the
postturbulence periodic orbit I, whose “birth value” R{(e) is finite for
every value of €. [We will see the fate of T'(€) in the next section.]

Now, considering the matter in detail, let us sketch the major features
concerning the sequences { H'(¢€)}, {4'(¢)}, {C'(¢)) as € is increased from
zZero.

Consider first the sequence { H'}. It gets rapidly squashed against H°.
In fact, it is not difficult to verify that, while for € = 0.15 the orbit H? is
easy to find, for e = 0.20 it is not detectable any more even if the orbit H'
continues to bifurcate through — 1. Furthermore, one can easily check that
p,(€) tends to p,(e€) as e tends to €.

3 Each of the sequences { H'}, {47}, {C’}, has to be regarded as four symmetrical sequences
(Hl}, {Al}, {CL}, undergoing identical behavior, as mentioned in Section 2.
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Another feature about H° can be observed fixing e in the range (¢,, €3),
where €, = 0.3154. The H2’s arise unstable from unstable P, at R = py(¢)
(see Fig. 3c). This fact seems quite interesting because it is an example of a
direct Hopf bifurcation from unstable fixed points into unstable periodic
orbits. As R increases, the HY’s gain stability at R = Rs(e) and then they be-
come again unstable at R = p;(e) because of an eigenvalue -1. For R slightly
greater than g.(e), any randomly chosen initial data in a neighborhood of
HP is rapidly attracted by I'. We cannot exclude, though, that at g1(e) we
have an inverse bifurcation to an unstable orbit of double period.

As far as the sequence {4’} is concerned, there is numerical evidence
that their R range of existence tends to vanish as e increases from zero. We
have verified that for ¢ = 0.15 the stability R-range of A is about 0.0013,
while the same range for € = 0 is about 0.015.

Also the R range of stability of the sequence {C’} vanishes as
increases, but in a different way.

For 0 < € < 0.32 the periodic orbit C? arises stable, together with an
unstable C*, at R = y(e). It then becomes unstable at R = »,(¢), because a
real eigenvalue of the Liapunov matrix of its Poincaré map leaves the unit
circle through — 1. The next orbit of the sequence, C !, however, becomes
indetectable for values of € greater than 0.15, as its range of stability gets
smaller and smaller.

The behavior of C° suddenly changes for € > 0.32. In fact its stability
range quickly vanishes because a pair of complex conjugate eigenvalues
crosses the unit circle.

For € = 0.34 C° arises unstable, and remains unstable for every value
of R at which it is detectable.

To notice the fact that for € > 0.32, we have ry(e) < R (¢), which
means that the orbit C° exists for values of (R,e) at which the stationary
solutions P, do not exist. Moreover, the unstable C° has been followed in €
up to € = 0.347, i.e., a value of € at which the P,’s do not exist for any R [in
fact Ri(€)—> + oo as eTe; = 0.3464 . . . |. Hence the four orbits C° are not
strictly connected with the four stationary solutions P__, as it may appear at
€=,

5. A PERIODIC ORBIT COMMON TO THE TWO MODELS

Two stable periodic orbits I', and I'_, each one invariant under the
symmetry (), and transformed into the other by () or (y), are present for
any value of € €[0,1]. We will refer to both of them simply as T in the
following, as they undergo identical behavior, owing to the symmetries of
the system.
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Table |

€ Rr(e) Rf(e)
0 14.9 +
0.1 15.1 + o
0.3 16.7 + oo
0.5 20.6 +
0.7 33.5 105.5
0.9 44.4 593.9
1 63.3 197.5

In different ranges of €, however, I' plays quite different roles. Ate =1
(see Ref. 6), it is a “preturbulence” orbit, which becomes unstable at
R = 197.5 bifurcating into a stable 2-torus T(I"), which in turn becomes
unstable. At ¢=0, on the other hand (see Refs. 4 and 5) I' is a
“postturbulence” orbit which is stable and attracting VR > 14,954

Introducing the notation Ry(e), R[(¢), respectively, for the least and
the largest values of R, fixed e, at which T exists and is attracting, we
numerically determined the scheme shown in Table I, displaying different
strange features. While R{(¢) looks like a nicely increasing function, R{(e),
far from showing any regularity, seems to overtake infinite value for some
€. The explanation lies in the behavior of the eigenvalues of the Liapunov
matrix of the Poincaré map for I', which will be called M(R,¢).

Let us first consider the function R{(e).

For values of € < 0.3, R{(€) represents the least value of R for which T’
exists; in fact one can see numerically that a real eigenvalue of M tends to
join the unit circle at +1, as R decreases to R/(e); we have verified
numerically that with decreasing R toward R[(¢) the stable periodic orbit T’
coalesces with an unstable orbit I'* (as predicted by the general bifurcation
theory®), and that for R < R[(e) the orbit is no longer present, so that
R{(¢) is a “birth” value for T, let us call it Rp(e).

At other values for €, though, R{(e€) is no longer a “birth” value for the
orbit I':

At e = 0.5, for instance, R}(¢) represents the least value of R for which
T is stable; with decreasing R beyond R{(e), an eigenvalue of M actually
crosses the unit circle at +1, so that for R < R{(¢), I' exists, but- it is
unstable. We did not investigate what kind of bifurcation takes place at
R{(¢) for this value of T'; however, as R decreases from Ry(e), we see
numerically that another eigenvalue of M tends to join the unit circle at

4The presence of a stable periodic orbit for high values of the parameter in a dissipative
system of this kind is not surprising: for the Lorenz model, for instance, it has been
rigorously shown by K. Robbins.(!?
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+1, and the now unstable I' coalesces at R = R{(0.5) = 20.19 with a
“twice” unstable T* (i.e., with two real eigenvalues out of the unit circle);
this latter is the value of R to be regarded as the birth point of I at e = 0.5.

At e=0.7T still loses stability as R decreases beyond R{(e) with a real
eigenvalue actually crossing the unit circle at + 1.

At e = 0.9 and € = 1. " becomes unstable with decreasing R, as a pair
of complex conjugate eigenvalues of M crosses the unit circle for R
= Ri(e).

We think that a birth value Rf(e) for T still exists at these values of ¢,
but as T rapidly becomes very unstable with decreasing R, it is difficult to
follow it continuously and to determine R{(e).

To the unexpected nonmonotone trend of Ry'(e), it is reasonable to say
that R{(¢) is actually piecewise monotone, and the intervals of monotonic-
ity can be determined again looking at the behavior of the eigenvalues
£ ..., & of M(R,e€). More precisely, our numerical investigations suggest
considering four € intervals:

(a) 0<e<eg
R{(€) is presumably infinite. For any R greater than R{(¢) all the eigenval-
ues of M are inside the unit circle, and I' is stable and attractive.

For € = ¢,, which seems numerically to be about 0.5, a real eigen-
value, & tends to +1 as R tends to infinity.

b) g <e<e
Here R{(¢) is a decreasing function. Now the eigenvalue &; actually crosses
the unit circle for some finite value of R, and T’ becomes unstable.

For e = €5, R{"(¢) has a minimum as a second eigenvalue of M, say §,,
goes out of the unit circle through 41 at the same time of ;. We did not
determine es.

(€) es<e<eg
R[(€) is an increasing function. I' becomes unstable at R = R{(¢) because
&, crosses the unit circle at + 1. Such a bifurcation, however, has not been
investigated. We have instead found that 0.83 < ¢, < 0.85. In fact, for
e =0.83 I' loses stability at R = R{/(.83) = 1750.0 because of the real
eigenvalue §, becoming greater than + 1, while for € = 0.85. T’ becomes
unstable at R = R{(0.85) = 2634.0 because of the pair of complex conju-
gate eigenvalues (£, £,) crossing the unit circle. For 0.835 < € < 0.845, on
the other hand, I is still stable at R = 3300., with period II(T") = 0.060, and
since the period of I' is a decreasing function of R and T is a very large
orbit, it is not worth integrating it numerically for larger values of R.

(d) e<ex
R{(e) is a decreasing function, and fixing € in this range, I' loses stability at
R = Ry(e) with a pair of complex conjugate eigenvalues, £&; and £, crossing
the unit circle; as expected from the general bifurcation theory,® T
bifurcates into a stable 2-torus 7'(I'), as R increases beyond R/(e).
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Remark. For R slightly greater than Ry(e) all the eigenvalues of M
are inside the unit circle. We have then a picture for these eigenvalues,
which is quite similar to the one in Section 3 (Fig. 2), concerning eigenval-
ues of the Liapunov matrix for the stationary solutions P,. Observing that
the role played there by the imaginary axis is here played by the unit circle,
we still have two complex conjugate eigenvalues §,, §, that become real as
R increases. Depending on the value of € that has been fixed, the pair will
become real outside the unit circle (d) or inside the unit circle (a, b,¢). In
this latter case one of the two now real eigenvalues, §,, increases in a finite
range: if this range contains + 1 we have (c). Otherwise, we have (b) when
the range of another eigenvalue, §,(R), contains + 1, and (a) when it does
not contain + 1 either.

6. PERIODIC SOLUTIONS FROM THE SEVEN-MODE MODEL

In Ref. 6 the model is studied at e =1; in this case a stochastic
behavior is observed at large values of R, when no simple attractor is
present. Two symmetric stable periodic orbits @,, bifurcated from the
stationary solutions P, via a Hopf bifurcation at R = R,(1), and two other
symmetric orbits I'_, lose stability bifurcating into two 2-tori T(8,), T(I")),
respectively, as R increases beyond certain critical values. We have already
seen in Section 5 that T is the postturbulence orbit of the five-mode model.
Studying the two functions R{(¢) and R/ (¢) and their different meanings to
the bifurcations of I', we also saw how its role changes as € increases from
zero to one.

For what concerns the orbits @, present in the interval (¢, 1], we have
not performed an analogous study as e varies, limiting ourselves to investi-
gating their behavior at € = 0.3. Referring to the next section for the results
of such study, let us remark here something about their period, II(®,).
Using Hopf’s theorem to predict the period of the orbits ®,, we have that
T1(®) = 27 /A,, A, being the imaginary part of the eigenvalues of L (R,¢)
crossing the imaginary axis as a pair of complex conjugate numbers. Since
Ao— 0 as e}, (see Section 3 and Fig. 2), the period of © tends to infinity as
€ decreases to €.

Still in Ref. 6, four other stable periodic orbits are studied, x:,, and
V1.2, that do not seem to bifurcate into any other attractor as they lose sta-
bility with increasing R (see Section 2); we have verified that these orbits
tend to become unstable for every R as e decreases from e = 1. More precise-
ly x1 and x. are two symmetric periodic orbits, each one invariant under
symmetry (y) and transformed in the other by («) or (8); as they undergo
identical behavior, owing to the symmetry of the system, they will be
referred to as x in the following. ¢, and i, are invariant under (a) and each
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one is transformed into the other by ( 8) or (y), so that they will be referred
to as ¢ in the following. Keeping, as in Section 5, the notation R (€) and
R (¢), respectively, for the least value of R, fixed e, for which x and ¢ are
stable, and R (), R/ (¢) for the largest values of R for which, respectively,
x and ¢ exist and are attractors, we have from Ref. 6, that R (1) = 141.7
and R7(1)=248.2, while R/(1) = 146.61 and R/ (1) = 166.59. It has been
verified numerically that the range of stability [R”(€) — R'(¢)] rapidly de-
creases with e in both cases. As far as x is concerned, there is numerical
evidence that
[Ri(9) = Ry(e)] 20

where €, = 0.85. A similar trend is observed for ¢, but we did not determine
a value for € at which the R range of stability for i vanishes, because the
strong dependence of Y on € made it both difficult and expensive to follow
¢ continuously as € decreases from e = 1.

7. AN INTERMEDIATE MODEL: ¢ = 0.3

As mentioned in Section 3, if we consider the system (3.1) regarded at
fixed € € (¢;,¢;) as a one-parameter family of differential equations (the
parameter being R), we have a superposition of the phenomenologies of the
five-mode model and of the seven-mode one. Moreover, for these values of
€, no chaotic behavior is observed at any value of R. We think then it is
worth describing rather in detail the asymptotic behavior of solutions of the
system at € = 0.3, summarized graphically in Fig. 5. The dependence on €
of the critical values R;(¢) will not thus be stressed any more in the present
section.

As expected by rigorous computations and verified numerically (see
Section 3, and Fig. 3B), we have the following:

@ O<KR<KR =274
One stationary solution, P, is present, stable, and by numerical evidence
globally attractive.

(i) R,<R<R,=879
Two more stationary solutions P, are present, bifurcated at R = R, from
P, therefore now unstable; the P ’s are symmetric, stable and attractive.
(6 = =; for coordinates see Section 3.)

(i) R, < R< R, =1232
As R increases beyond R, a pair of complex conjugate eigenvalues of the
Liapunov matrix for P, crosses the imaginary axis, and two stable periodic
solutions ®, arise via a direct Hopf bifurcation, each around one of the
now unstable P’s.

(iv) AtR=R,
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One of two positive eigenvalues of the Liapunov matrix for P, crosses the
imaginary axis from right to left, and P, bifurcate into four unstable
stationary solutions P,_, two from each P,.

The other phenomena taking place as R varies have been studied
numerically.

The orbits ®,, which will be now on referred to as 0, exhibit an
interesting feature: either they exist and are attractors, or they do not exist
at all. In fact ® appears stable via a Hopf bifurcation at R = R,, with
period II(®) = 12.05 = 2% /|Im A,|, as predicted by the general bifurcation
theory. Numerical studies show that the eigenvalues of its Poincaré map
keep inside the unit circle for values of R up to R = 19.660, when a real
eigenvalue joins the unit circle at + 1. We verified that at this value of the
parameter, ® coalesces with an unstable periodic orbit ®*, which is present
at the same time. The two critical values of R can thus be regarded,
respectively, as points of “birth” and “death,” R§ and R§, for ©®, which
therefore exists and is an attractor for 8.79 = R§ < R < R§ = 19.66.

So far, the phenomenology connected with the two points P,. Consider
now the four stationary solutions P, , bifurcated unstable from unstable P,
at R = R, (Fig. 3B). They become stable at R = R, = 16.85, when a pair of
complex conjugate eigenvalues of Lgyr crosses the imaginary axis from right
to left. We can exclude that a direct Hopf bifurcation takes place, since any
numerical attempt to find a stable periodic orbit of the expected period
around P,_for R slightly smaller than R, gave no result. We can guess that
an inverse Hopf bifurcation takes place at R = R,, and an unstable
periodic orbit is present around each P, for R > R,, but we could not
verify it.

R, < R < py=127.37
P__are stable up to R = p,, when a direct Hopf bifurcation takes place and
four stable symmetric periodic orbits H® appear, each around one P, .

At R =p, =33.19 H® becomes unstable as a real eigenvalue of its
Poincaré map crosses the unit circle at — 1; unlike the case € = 0 (see Refs.
4 and 5), H® does not seem to bifurcate into a stable orbit of doubled
period. For R slightly greater than p,, initial data near the now unstable H°
are attracted by other attractors present at the same time.

17.57 = R¢ < R < Rl =17.68; In this range of R another periodic
orbit is present, C, which appears at R = R together with an unstable one,
C* (i.e., as R RS, C coalesces with C*). At R = R/ a real eigenvalue of the
Poincaré map for C crosses the unit circle at — 1, but no period-doubling
bifurcation seems to take place. (C must actually be regarded as four orbits
symmetrically placed.)

The periodic orbit I' arises at R = Rf == 16.73 together with unstable
T'*, and remains stable and attracting for every value of R that we have
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investigated (up to R = 5000). As R increases the period II(I') decreases,
and for large values of the parameter any random initial point is rapidly
attracted by T.

As mentioned in Section 4, the orbit A, which for € = 0 gives rise to an
infinite series of period-doubling bifurcations, is no longer detectable at this
value of .

At € = 0.3, therefore, no chaotic behavior is observed. At every value
of R the nonwandering set £(R) consists of a finite number of stationary
solutions and periodic orbits, at least one of which is stable and attracting,
as it is possible to verify integrating system (3.1) with random initial data.

8. CONCLUSIONS

In this paper we have studied the trapsition from a 5-mode model of
truncated Navier—Stokes equations, to a 7-mode one. The two models, the
latter extending the former, exhibit two rather different phenomenologies,
and this motivated our study. In fact, setting a weight € on the two added
modes, x, and x,, one can see what their relevance is to the whole
phenomenology.

The main results of the study are synthesized in Fig. 6, where it is
possible to check how crucial the critical value €, is, since the phenomenol-
ogy connected with the four stationary solutions P, goes to infinity as €
tends to €, (curves R, R,, pg)-

The other two infinite sequences of periodic orbits, {4’} and {C'},
present in the 5-mode model and connected with the onset of turbulence,
disappear because their R-range of stability vanishes as € increases from
zero. For this reason their critical curves are not pictured in Fig. 6, but it is
worth saying that for € = 0.34 they are both already gone.

Turbulence disappears in the same way as € increases from zero. It
develops in a range of R which is finite in the 5-mode model (¢ = 0), shifts
to higher R’s as e increases, and vanishes canceled by the periodic orbit T,
whose birth function, Rf(e) overtakes finite values for every e €[0,1]. As e
tends to 1, turbulence develops at high values of R, when no other simple
attractor is present.

The critical curves for the orbits x and i of the 7-mode model are not
present in Fig. 6, because their behavior is analogous to {4 Y and {C‘},
that is, their R ranges of stability vanish as e decreases from one. For
€ = 0.8 they are both already gone.

We did not investigate in more detail (except for the strange € = 0.3
case) the behavior of system (3.1) at intermediate values of €, even though it
might show interesting phenomena not present at € =0 nor at e = 1. We
preferred to understand thoroughly how the 5-mode phenomenology disap-
pears and how the onset of the 7-mode one takes place.
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